The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties
Artikel i vetenskaplig tidskrift, 2018

To shed light on the deuteron radius puzzle we analyze the theoretical uncertainties of the nuclear structure corrections to the Lamb shift in muonic deuterium. We find that the discrepancy between the calculated two-photon exchange correction and the corresponding experimentally inferred value by Pohl etal. [1] remain. The present result is consistent with our previous estimate, although the discrepancy is reduced from 2.6 sigma about 2 sigma. The error analysis includes statistic as well as systematic uncertainties stemming from the use of nucleon-nucleon interactions derived from chiral effective field theory at various orders. We therefore conclude that nuclear theory uncertainty is more likely not the source of the discrepancy. (c) 2018 The Authors. Published by Elsevier B.V.


O. J. Hernandez

University of British Columbia (UBC)

Johannes Gutenberg-Universität Mainz


Andreas Ekström

Chalmers, Fysik, Subatomär fysik och plasmafysik

N. Nevo Dinur


C. Ji

Central China Normal University

S. Bacca

University of Manitoba


Johannes Gutenberg-Universität Mainz

N. Barnea

The Hebrew University Of Jerusalem

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

0370-2693 (ISSN)

Vol. 778 377-383


Subatomär fysik

Annan fysik



Mer information

Senast uppdaterat