Homogenized free surface flow in porous media for wet-out processing
Artikel i vetenskaplig tidskrift, 2018
This paper presents a novel porous media model for homogenized free surface flow, representing wet-out composites processing. The model is derived from concepts of homogenization applied to a compressible two-phase flow, accounting for capillary effects and the concept of relative permeability. Based on mass balance considerations, we obtain a nonlinear set of equations of convection-diffusion type involving the mixture (fluid) pressure and the degree of saturation as primary fields. A staggered Galerkin finite element approach is employed to decouple the solution. Moreover, the streamline upwind/Petrov-Galerkin technique is applied to attenuate the oscillations in the saturation solutions. The model accuracy and convergence of the finite element solutions are demonstrated through 1-dimensional and 2-dimensional examples, representing resin transfer molding flow processes.
process modeling
free surface flow
resin transfer molding
porous media theory
partial saturation