Large but decreasing effect of ozone on the European carbon sink
Artikel i vetenskaplig tidskrift, 2018

The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.

Författare

Rebecca J. Oliver

UK Centre For Ecology & Hydrology (UKCEH)

Lina M. Mercado

UK Centre For Ecology & Hydrology (UKCEH)

University of Exeter

Stephen Sitch

University of Exeter

David Simpson

Meteorologisk institutt

Chalmers, Rymd-, geo- och miljövetenskap, Mikrovågs- och optisk fjärranalys

Belinda E. Medlyn

Western Sydney University

Yan Shih Lin

UK Centre For Ecology & Hydrology (UKCEH)

Gerd A. Folberth

Met Office

Biogeosciences

1726-4170 (ISSN) 1726-4189 (eISSN)

Vol. 15 13 4245-4269

ModElling the Regional and Global Earth system (MERGE)

Lunds universitet (9945095), 2010-01-01 -- .

Ämneskategorier

Naturgeografi

Miljövetenskap

Klimatforskning

DOI

10.5194/bg-15-4245-2018

Mer information

Senast uppdaterat

2024-10-11