Förster Resonance Energy Transfer Study of the Improved Biocatalytic Conversion of CO2 to Formaldehyde by Coimmobilization of Enzymes in Siliceous Mesostructured Cellular Foams
Artikel i vetenskaplig tidskrift, 2018

By combining two enzymes, formate dehydrogenase (FateDH) and formaldehyde dehydrogenase (FaldDH), it is possible to drive the thermodynamically unfavorable conversion of CO2to formaldehyde. For this purpose, the enzymes were coimmobilized in siliceous mesostructured cellular foams (MCFs). A high degree of adsorption of both enzymes was achieved by coimmobilizing the enzymes sequentially, i.e., first FateDH and then FaldDH. The highest conversion rate was obtained with an enzyme mass ratio of 1:15 (FateDH/FaldDH). Using MCF functionalized with mercaptopropyl groups (MCF-MP), the activity increased ∼4 times compared to the enzymes free in solution. To probe the distance between the two enzymes, they were separately labeled with either Cy3 or Cy5 dyes and studied with Förster resonance energy transfer (FRET). An increased energy transfer was observed when the enzymes were coimmobilized in MCF-MP, suggesting that the two enzymes are in close proximity, resulting in higher conversion of CO2to formaldehyde.


Pegah Sadat Nabavi Zadeh

Chalmers, Kemi och kemiteknik, Kemi och biokemi, Fysikalisk kemi

Milene Zezzi Do Valle Gomes

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Teknisk ytkemi

Björn Åkerman

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Anders Palmqvist

Chalmers, Kemi och kemiteknik, Tillämpad kemi

ACS Catalysis

2155-5435 (eISSN)

Vol. 8 8 7251-7260


Biokemi och molekylärbiologi

Analytisk kemi




Mer information

Senast uppdaterat