Investigation of subsynchronous control interaction in DFIG-based wind farms connected to a series compensated transmission line
Artikel i vetenskaplig tidskrift, 2019

The aim of this paper is to investigate the risk for subsynchronous control interaction (SSCI) in doubly-fed induction generator (DFIG) based wind farms connected to series-compensated transmission lines. For this purpose, a detailed analytical model of the frequency-dependent input admittance of the DFIG is derived. The developed admittance model is then used to get insights on the frequency characteristic of the DFIG wind turbine generator unit. In particular, the power-dissipation properties of the DFIG are used to identify those control parameters and operating condition that mainly impact the behaviour of the wind turbine in the subsynchronous frequency range. The admittance model of the wind farm together with the impedance model of the series-compensated transmission line are used to identify the risk for SSCI. Through the use of the Generalized Nyquist Criterion, it is shown that the closed-loop bandwidth of the current controller that regulates the rotor current has a major detrimental impact on the stability of the system. Furthermore, results show that the active power set-point and the level of series compensation also play an important role on the overall system's stability. Time-domain simulations are conducted to validate the theoretical findings.

Subsynchronous resonance (SSR)

Subsynchronous control interaction (SSCI)

Frequency domain analysis

Doubly fed induction generator

Wind power


Selam Chernet

Chalmers, Elektroteknik, Elkraftteknik

Mebtu Bihonegn Beza

Chalmers, Elektroteknik, Elkraftteknik

Massimo Bongiorno

Chalmers, Elektroteknik, Elkraftteknik

International Journal of Electrical Power and Energy Systems

0142-0615 (ISSN)

Vol. 105 765-774


Hållbar utveckling






Annan elektroteknik och elektronik



Mer information

Senast uppdaterat