Capacity Gains of (3 × 3)×(3 × 3) MIMO Fixed Links with Planar Aperiodic Sparse Arrays in Pure-LOS Channels
Paper i proceeding, 2018

© 2018 IEEE. Presented is an analysis of the topology of a 3 × 3 element planar (square) array antenna with vertically polarized isotropic antenna elements. The focus has been on fixed multiple-input multiple-output communication links in pure line-of-sight channels. An empirical equation is presented for the mid-elements' relative position on the sides of the square array achieving near-optimal (3 × 3) × (3 × 3) multiple-input multiple-output capacity. It is observed that the position is a function of both the separation distance between transmit and receive antennas and the wavelength of the transmit signal in a similar way as for 3 × 3 systems with linear arrays. The capacity gains of the aperiodic planar array over the uniform planar array antenna configurations are presented. It is shown that considerable capacity gains in capacity can be obtained by choosing the right array topology following a simple design rule.

aperiodic array antenna

MIMO

Fixed links

sparse array antenna

Författare

Andres Alayon Glazunov

Universiteit Twente

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Antennsystem

Navid Amani

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Antennsystem

Ashraf Uz Zaman

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Antennsystem

Marianna Ivashina

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Antennsystem

Rob Maaskant

Technische Universiteit Eindhoven

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Kommunikationssystem

Proceedings of the 2018 8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC 2018

734-736 8503781

8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC 2018
Cartagena de Indias, Colombia,

Ämneskategorier

Telekommunikation

Kommunikationssystem

Signalbehandling

DOI

10.1109/APWC.2018.8503781

Mer information

Senast uppdaterat

2019-01-22