A primal active-set minimal-representation algorithm for polytopes with application to invariant-set calculations
Paper i proceeding, 2018

This paper provides a description of a practically efficient minimal-representation algorithm for polytopes. The algorithm is based on a primal active-set method that heavily exploits warm-starts and low-rank updates of matrix factorizations in order to reduce the required computational work. By using a primal active-set method, several nonredundant inequalities can be identified for each solved linear program. Implementation details are provided both for the minimalrepresentation algorithm and for the underlying active-set method.

Topology

invariant-set

Linear programming

minimal-representation

active-set method

Författare

Emil Klintberg

Qamcom Research & Technology

Zenuity AB

Magnus Nilsson

Qamcom Research & Technology

Zenuity AB

Lars Johannesson Mårdh

Zenuity AB

Ankit Gupta

Chalmers, Elektroteknik, System- och reglerteknik

Proceedings of the IEEE Conference on Decision and Control

07431546 (ISSN) 25762370 (eISSN)

Vol. 2018-December 6862-6867
978-153861395-5 (ISBN)

57th IEEE Conference on Decision and Control
Miami, USA,

Styrkeområden

Transport

Ämneskategorier

Beräkningsmatematik

Signalbehandling

Datavetenskap (datalogi)

DOI

10.1109/CDC.2018.8619642

Mer information

Senast uppdaterat

2024-01-03