GeneaLog: Fine-Grained Data Streaming Provenance at the Edge
Paper i proceeding, 2018
The memory and processing costs of fine-grained data provenance, possibly afforded by high-end servers, can be prohibitive for the resource-constrained devices deployed in edge computing and cyber-physical systems. Motivated by this challenge, we present GeneaLog, a novel fine-grained data provenance technique for data streaming applications. Leveraging the logical dependencies of the data, GeneaLog takes advantage of cross-layer properties of the software stack and incurs a minimal, constant size per-tuple overhead. Furthermore, it allows for a modular and efficient algorithmic implementation using only standard data streaming operators. This is particularly useful for distributed streaming applications since the provenance processing can be executed at separate nodes, orthogonal to the data processing. We evaluate an implementation of GeneaLog using vehicular and smart grid applications, confirming it efficiently captures fine-grained provenance data with minimal overhead.
Edge architectures
Fine-grained data provenance
Data streaming
Författare
Dimitrios Palyvos-Giannas
Chalmers, Data- och informationsteknik, Nätverk och system
Vincenzo Massimiliano Gulisano
Chalmers, Data- och informationsteknik, Nätverk och system
Marina Papatriantafilou
Chalmers, Data- och informationsteknik, Nätverk och system
Middleware '18 Proceedings of the 19th International Middleware Conference
227-238
978-1-4503-5702-9 (ISBN)
Rennes, France,
HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman
Vetenskapsrådet (VR) (2016-03800), 2017-01-01 -- 2020-12-31.
INDEED
Chalmers, 2016-01-01 -- 2020-12-31.
Molnbaserade produkter och produktion (FiC)
Stiftelsen för Strategisk forskning (SSF) (GMT14-0032), 2016-01-01 -- 2020-12-31.
STAMINA - GE
Göteborg Energi, Forskningsstiftelsen, 2017-01-01 -- 2021-12-31.
Ämneskategorier (SSIF 2011)
Datorteknik
Datavetenskap (datalogi)
Datorsystem
Styrkeområden
Informations- och kommunikationsteknik
Energi
DOI
10.1145/3274808.3274826