Variable selection and validation in multivariate modelling
Artikel i vetenskaplig tidskrift, 2019

Motivation Validation of variable selection and predictive performance is crucial in construction of robust multivariate models that generalize well, minimize overfitting and facilitate interpretation of results. Inappropriate variable selection leads instead to selection bias, thereby increasing the risk of model overfitting and false positive discoveries. Although several algorithms exist to identify a minimal set of most informative variables (i.e. the minimal-optimal problem), few can select all variables related to the research question (i.e. the all-relevant problem). Robust algorithms combining identification of both minimal-optimal and all-relevant variables with proper cross-validation are urgently needed. Results We developed the MUVR algorithm to improve predictive performance and minimize overfitting and false positives in multivariate analysis. In the MUVR algorithm, minimal variable selection is achieved by performing recursive variable elimination in a repeated double cross-validation (rdCV) procedure. The algorithm supports partial least squares and random forest modelling, and simultaneously identifies minimal-optimal and all-relevant variable sets for regression, classification and multilevel analyses. Using three authentic omics datasets, MUVR yielded parsimonious models with minimal overfitting and improved model performance compared with state-of-the-art rdCV. Moreover, MUVR showed advantages over other variable selection algorithms, i.e. Boruta and VSURF, including simultaneous variable selection and validation scheme and wider applicability.

Författare

Lin Shi

Sveriges lantbruksuniversitet (SLU)

Chalmers, Biologi och bioteknik, Livsmedelsvetenskap

Johan A. Westerhuis

North-West University

Swammerdam Institute for Life Sciences

Johan Rosén

Livsmedelsverket

Rikard Landberg

Sveriges lantbruksuniversitet (SLU)

Chalmers, Biologi och bioteknik, Livsmedelsvetenskap

Carl Brunius

Chalmers, Biologi och bioteknik, Livsmedelsvetenskap

Bioinformatics

1367-4803 (ISSN) 13674811 (eISSN)

Vol. 35 6 972-980

Ämneskategorier (SSIF 2011)

Bioinformatik (beräkningsbiologi)

Sannolikhetsteori och statistik

Reglerteknik

DOI

10.1093/bioinformatics/bty710

PubMed

30165467

Mer information

Senast uppdaterat

2022-02-04