Parameter Estimation for Nonlinear Mixed Effects Models Implemented in Mathematica
Poster (konferens), 2019

In many applications within biology and medicine, measurements are gathered from several entities in the same experiment. This could for example be patients exposed to a treatment or cells measured after stimuli. To characterize the variability in response between entities, the nonlinear mixed effects (NLME) model is a suitable statistical model. An NLME model enables quantification of both within- and between subject variability. The parameter estimation in NLME models is not straightforward, due to the intractable expression of the likelihood function. In this work we present a Mathematica package for parameter estimation in NLME models where the longitudinal model is defined by differential equations. The parameter estimation problem is solved by the first-order conditional estimation (FOCE) method with exact gradients. The package is demonstrated using data from a simulated drug concentration model.

Mixed effects models

Stochastic differential equations

Ordinary differential equations

Parameter estimation

Författare

Jacob Leander

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Joachim Almquist

Systembiologi

Helga Kristín Ólafsdóttir

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Anna Johnning

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Mats Jirstrand

Chalmers, Elektroteknik, System- och reglerteknik

Workshop on Modelling in Biology and Medicine
Gothenburg, Sweden,

Ämneskategorier (SSIF 2011)

Farmaceutisk vetenskap

Sannolikhetsteori och statistik

Reglerteknik

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

Mer information

Senast uppdaterat

2022-02-17