Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene
Övrig text i vetenskaplig tidskrift, 2019
imaging capabilities with multipixel focal plane heterodyne arrays5. Here we show that graphene uniformly doped to the Dirac point, with material resistance dominated by quantum localization and thermal relaxation governed by electron diffusion, enables highly sensitive and wideband coherent detection of signals from 90 to 700 GHz and, prospectively, across the entire terahertz range. We measure on proof-of-concept graphene bolometric mixers an electron diffusion-limited gain bandwidth of 8 GHz (corresponding to a Doppler shift of 480 km s−1 at 5 THz) and intrinsic mixer noise temperature of 475 K (which would be equivalent to ~2 hν/kB at ν = 5 THz), limited by the residual thermal background in our setup. An optimized device will result in a mixer noise temperature as low as 36 K, with the gain bandwidth exceeding 20 GHz, and a local oscillator power of <100 pW. In conjunction with the emerging quantum-limited amplifiers at the intermediate frequency6,7, our approach promises quantum-limited sensing in
the terahertz domain, potentially surpassing superconducting technologies, particularly for large heterodyne arrays
hot electron bolometer
terahertz
graphene
HEB
mixer
Författare
Samuel Lara Avila
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
National Physical Laboratory (NPL)
Andrey Danilov
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Dmitry Golubev
Aalto-Yliopisto
Hans He
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Kyung Ho Kim
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Rositza Yakimova
Linköpings universitet
Floriana Lombardi
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Thilo Bauch
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Serguei Cherednichenko
Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik
Sergey Kubatkin
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Nature Astronomy
23973366 (eISSN)
Vol. 3 11 983-988Ämneskategorier
Acceleratorfysik och instrumentering
Styrkeområden
Informations- och kommunikationsteknik
Nanovetenskap och nanoteknik
Infrastruktur
Kollberglaboratoriet
Nanotekniklaboratoriet
DOI
10.1038/s41550-019-0843-7