Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene
Artikel i vetenskaplig tidskrift, 2019

Spectacular advances in heterodyne astronomy1,2 have been
largely due to breakthroughs in detector technology3. To
exploit the full capacity of future terahertz (∼300 GHz–5 THz)
telescope space missions4, new concepts of terahertz coherent
receivers are needed, providing larger bandwidths and
imaging capabilities with multipixel focal plane heterodyne
arrays5. Here we show that graphene uniformly doped to the
Dirac point, with material resistance dominated by quantum
localization and thermal relaxation governed by electron diffusion,
enables highly sensitive and wideband coherent detection
of signals from 90 to 700 GHz and, prospectively, across
the entire terahertz range. We measure on proof-of-concept
graphene bolometric mixers an electron diffusion-limited
gain bandwidth of 8 GHz (corresponding to a Doppler shift
of 480 km s−1 at 5 THz) and intrinsic mixer noise temperature
of 475 K (which would be equivalent to ~2 hν/kB at ν = 5 THz),
limited by the residual thermal background in our setup. An
optimized device will result in a mixer noise temperature as
low as 36 K, with the gain bandwidth exceeding 20 GHz, and
a local oscillator power of <100 pW. In conjunction with the
emerging quantum-limited amplifiers at the intermediate frequency6,7,
our approach promises quantum-limited sensing in
the terahertz domain, potentially surpassing superconducting
technologies, particularly for large heterodyne arrays

graphene

terahertz

mixer

hot electron bolometer

HEB

Författare

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Andrey Danilov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Dmitry Golubev

Aalto-Yliopisto

Hans He

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Kyung Ho Kim

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Rositza Yakimova

Linköpings universitet

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Serguei Cherednichenko

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Nature Astronomy

23973366 (eISSN)

Vol. 4

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik (2010-2017)

Infrastruktur

Kollberglaboratoriet

Nanotekniklaboratoriet

Ämneskategorier

Annan fysik

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1038/s41550-019-0843-7

Mer information

Senast uppdaterat

2019-09-11