BES: Differentially Private Event Aggregation for large-scale IoT-based Systems
Artikel i vetenskaplig tidskrift, 2020
We investigate the above problems from a system-perspective and study how differential privacy can be used to complement other privacy-enhancing technologies to allow for controlled large data disclosure. We present a streaming-based framework, Bes, where we leverage the often distributed nature of typical IoT systems for efficient computation of differentially private aggregates. We also propose methods to limit the noise that is commonly introduced for differential privacy in real-world applications, by bounding the outliers based on (differentially private) parameters of the actual system at hand or data from other similar systems.
We also provide a thorough evaluation based on a fully implemented Bes prototype using real-world data from of a concrete IoT system, namely an Advanced Metering Infrastructure (AMI). We show how a large number of events can be aggregated in a private fashion with low processing latency, even when the processing is made by a single-board device, with similar capabilities to the devices deployed in AMIs. Moreover, by implementing a de-pseudonymization attack known from the literature, we also show the strong complementary protection offered by Bes’ differentially private aggregation, compared to other privacy-enhancing technologies.
Advanced metering infrastructures
Differential privacy
Data streaming
Författare
Valentin Tudor
Chalmers, Data- och informationsteknik, Datorteknik
Vincenzo Massimiliano Gulisano
Chalmers, Data- och informationsteknik, Nätverk och system
Magnus Almgren
Chalmers, Data- och informationsteknik, Nätverk och system
Marina Papatriantafilou
Chalmers, Data- och informationsteknik, Nätverk och system
Future Generation Computer Systems
0167-739X (ISSN)
Vol. 108 1241-1257Säkra IT-system för drift och övervakning av samhällskritisk infrastruktur
Myndigheten för samhällsskydd och beredskap (2015-828), 2015-09-01 -- 2020-08-31.
INDEED: Information and Data-processing in Focus for Energy Efficiency
Chalmers, 2020-01-01 -- .
Styrkeområden
Informations- och kommunikationsteknik
Energi
Drivkrafter
Hållbar utveckling
Ämneskategorier
Data- och informationsvetenskap
DOI
10.1016/j.future.2018.07.026