Numerical assessment of the loading of rolling contact fatigue cracks close to rail surface irregularities
Artikel i vetenskaplig tidskrift, 2020

Rolling contact fatigue damage of railway rails in the form of squats, characterised by local depressions and cracks located at the rail surface, has been linked to the occurrence of local rail surface irregularities. This study concerns rolling contact fatigue cracks in the vicinity of fairly smooth surface irregularities, here denoted dimples. The influence of factors such as dimple geometry, cluster effects, and crack size is evaluated. To this end, dynamic vehicle–track simulations featuring realistic wheel and rail profiles are employed to characterise the dynamic impact during a wheel passage. The contact load in the vicinity of the dimples is then mapped onto a 3D finite element model of a rail section containing a crack in the rail head. The crack loading is finally quantified by multimodal stress intensity factors. The analyses establish that also shallow dimples might have a significant impact on the crack loading. This effect is increased for larger or multiple irregularities but decreases as the crack grows.

dynamic vehicle‐track interaction

rail surface irregularities

rolling contact fatigue

linear elastic fracture mechanics

squat defects

Författare

Robin Andersson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Elena Kabo

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Anders Ekberg

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Fatigue and Fracture of Engineering Materials and Structures

8756-758X (ISSN) 1460-2695 (eISSN)

Vol. 43 5 947-954

In2Track-2 (CHARMEC EU19)

Europeiska kommissionen (Horisont 2020), 2018-11-01 -- 2021-10-31.

Trafikverket, 2018-11-01 -- 2021-10-31.

In2Track

Trafikverket, 2016-09-01 -- 2019-06-30.

Europeiska kommissionen (Horisont 2020), 2016-12-01 -- 2020-12-31.

Drivkrafter

Hållbar utveckling

Ämneskategorier

Tribologi

Teknisk mekanik

Styrkeområden

Transport

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1111/ffe.13168

Mer information

Senast uppdaterat

2020-05-20