Drift-preserving numerical integrators for stochastic Hamiltonian systems
Artikel i vetenskaplig tidskrift, 2020

The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a time integrator having the same property for all times. Furthermore, strong and weak convergence of the numerical scheme along with efficient multilevel Monte Carlo estimators are studied. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.

Trace formula

Strong convergence

Numerical schemes

Weak convergence

Stochastic differential equations

Stochastic Hamiltonian systems

Energy

Multilevel Monte Carlo

Författare

Chuchu Chen

Chinese Academy of Sciences

David Cohen

Umeå universitet

Raffaele D'Ambrosio

Universita degli Studi dell'Aquila

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Advances in Computational Mathematics

1019-7168 (ISSN) 1572-9044 (eISSN)

Vol. 46 2 27

Approximation och simulering av Lévy-drivna SPDE

Vetenskapsrådet (VR) (2014-3995), 2015-01-01 -- 2018-12-31.

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Reglerteknik

Signalbehandling

Fundament

Grundläggande vetenskaper

DOI

10.1007/s10444-020-09771-5

Mer information

Senast uppdaterat

2022-04-05