ABINIT: Overview and focus on selected capabilities
Reviewartikel, 2020

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

Författare

Aldo H. Romero

West Virginia University

Douglas C. Allan

Corning Incorporated

Bernard Amadon

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Gabriel Antonius

Université du Québec à Trois-Rivières

Thomas Applencourt

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Lucas Baguet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Université Pierre et Marie Curie (UPMC)

Jordan Bieder

Universite de Liège

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

François Bottin

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Johann Bouchet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Eric Bousquet

Universite de Liège

Fabien Bruneval

Université Paris-Saclay

Guillaume Brunin

Universite catholique de Louvain

Damien Caliste

Université Grenoble Alpes

Michel Côté

Université de Montréal

Jules Denier

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Cyrus Dreyer

Flatiron Institute

Rutgers University

Stony Brook University

Philippe Ghosez

Universite de Liège

Matteo Giantomassi

Universite catholique de Louvain

European Theoretical Spectroscopy Facility

Yannick Gillet

Universite catholique de Louvain

Olivier Gingras

Université de Montréal

Donald R. Hamann

Mat-Sim Research LLC

Rutgers University

Geoffroy Hautier

Universite catholique de Louvain

François Jollet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Gérald Jomard

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Alexandre Martin

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Universite de Liège

Henrique P.C. Miranda

Universite catholique de Louvain

Francesco Naccarato

Universite catholique de Louvain

Guido Petretto

Universite catholique de Louvain

Nicholas A. Pike

Universite de Liège

European Theoretical Spectroscopy Facility

Valentin Planes

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Sergei Prokhorenko

Universite de Liège

T. Rangel

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Fabio Ricci

Universite de Liège

Gian Marco Rignanese

Universite catholique de Louvain

European Theoretical Spectroscopy Facility

Miquel Royo

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Massimiliano Stengel

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Institucio Catalana de Recerca i Estudis Avancats

Marc Torrent

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Michiel J. Van Setten

European Theoretical Spectroscopy Facility

Universite catholique de Louvain

Interuniversity Micro-Electronics Center at Leuven

Benoit Van Troeye

Rensselaer Polytechnic Institute

Universite catholique de Louvain

Matthieu J. Verstraete

Institut Catala de Nanociencia i Nanotecnologia

European Theoretical Spectroscopy Facility

Universite de Liège

Julia Wiktor

Chalmers, Fysik, Kondenserad materie- och materialteori

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Josef W. Zwanziger

Dalhousie University

Xavier Gonze

Universite catholique de Louvain

Skolkovo Institute of Science and Technology

European Theoretical Spectroscopy Facility

Journal of Chemical Physics

0021-9606 (ISSN) 1089-7690 (eISSN)

Vol. 152 12 124102

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1063/1.5144261

Mer information

Senast uppdaterat

2020-04-28