Improved many-body expansions from eigenvector continuation
Artikel i vetenskaplig tidskrift, 2020

Quantum many-body theory has witnessed tremendous progress in various fields, ranging from atomic and solid-state physics to quantum chemistry and nuclear structure. Due to the inherent computational burden linked to the ab initio treatment of microscopic fermionic systems, it is desirable to obtain accurate results through low-order perturbation theory. In atomic nuclei, however, effects such as strong short-range repulsion between nucleons can spoil the convergence of the expansion and make the reliability of perturbation theory unclear. Mathematicians have devised an extensive machinery to overcome the problem of divergent expansions by making use of so-called resummation methods. In large-scale many-body applications, such schemes are often of limited use since no a priori analytical knowledge of the expansion is available. We present here eigenvector continuation as an alternative resummation tool that is both efficient and reliable because it is based on robust and simple mathematical principles.

NUCLEI

PERTURBATION-THEORY

Författare

P. Demol

KU Leuven

T. Duguet

Université Paris-Saclay

KU Leuven

Andreas Ekström

Subatomär, högenergi- och plasmafysik

M. Frosini

Université Paris-Saclay

K. Hebeler

Technische Universität Darmstadt

GSI Helmholtzzentrum für Schwerionenforschung

S. Koenig

North Carolina State University

Technische Universität Darmstadt

GSI Helmholtzzentrum für Schwerionenforschung

D. Lee

Michigan State University

A. Schwenk

GSI Helmholtzzentrum für Schwerionenforschung

Max-Planck-Gesellschaft

Technische Universität Darmstadt

V Soma

Université Paris-Saclay

A. Tichai

Max-Planck-Gesellschaft

Technische Universität Darmstadt

GSI Helmholtzzentrum für Schwerionenforschung

Université Paris-Saclay

PHYSICAL REVIEW C

2469-9985 (ISSN) 2469-9993 (eISSN)

Vol. 101 4 041302

Strong interactions for precision nuclear physics

Europeiska forskningsrådet (ERC), 2018-02-01 -- 2023-01-31.

Ämneskategorier

Beräkningsmatematik

Annan fysik

Teoretisk kemi

DOI

10.1103/PhysRevC.101.041302

Mer information

Senast uppdaterat

2020-06-12