Evidence for Electron Transfer between Graphene and Non-Covalently Bound pi-Systems
Artikel i vetenskaplig tidskrift, 2020

Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic pi-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged pi-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.

trication

doping

graphene

sensors

functionalization

Författare

Steffen Brülls

Chalmers, Kemi och kemiteknik, Kemi och biokemi, Fysikalisk kemi

Valentina Cantatore

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi 2

Zhenping Wang

Freie Universität Berlin

Eric Tam

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Per Malmberg

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Jessica Stubbe

Freie Universität Berlin

Biprajit Sarkar

Freie Universität Berlin

Universität Stuttgart

Itai Panas

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi 2

Jerker Mårtensson

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Siegfried Eigler

Freie Universität Berlin

Chemistry - A European Journal

0947-6539 (ISSN) 1521-3765 (eISSN)

Vol. 26 29 (Special Issue) 6694-6702

Ämneskategorier

Materialkemi

Teoretisk kemi

Den kondenserade materiens fysik

DOI

10.1002/chem.202000488

PubMed

32227533

Mer information

Senast uppdaterat

2020-07-03