Induced L2-gain computation for rational LPV systems using Finsler's lemma and minimal generators
Artikel i vetenskaplig tidskrift, 2020

This paper proposes a novel method to compute an upper bound on the induced L2-
gain for a linear parameter varying (LPV) system with rational parameter dependence.
The proposed method relies on a standard dissipation inequality condition. The
storage function is a quadratic function of the state and a rational function of the
parameters. The specific parameter dependence is restricted to involve (fixed) rational
functions and an affine term with free decision variables. Finsler's lemma and affine
annihilators are used to formulate sufficient linear matrix inequality (LMI) conditions for
the dissipativity relation. The dimension and conservatism of the resulting LMI problem
are reduced by the joint application of minimal generators and maximal annihilators. An
LPV model of a pendulum-cart system is used to demonstrate the proposed method
and compare it to existing techniques in the literature.

rational Lyapunov function

linear fractional transformation


induced L2 gain

Linear parameter varying systems


Peter Polcz

Tamas Peni

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik, Reglerteknik

Gabor Szederkenyi

Systems and Control Letters

0167-6911 (ISSN)





Robotteknik och automation


Mer information