Finite-volume method for industrial-scale temperature-swing adsorption simulations
Artikel i vetenskaplig tidskrift, 2020

We formulate a mathematical model for temperature-swing adsorption systems. A finite-volume method is derived for the numerical solution of the model equations. We specifically investigate the influence of the choice of spatial discretization scheme for the convective terms on the accuracy, convergence rate and general computational performance of the proposed method. The analysis is performed with the nonlinear Dubinin-Radushkevich isotherm representing benzene adsorption onto activated carbon, relevant for gas cleaning in biomass gasification.

The large differences in accuracy and convergence between lower- and higher-order schemes for pure scalar advection are significantly reduced when using a non-linear isotherm. However, some of these differences re-emerge when simulating adsorption/desorption cycling. We show that the proposed model can be applied to industrial-scale systems at moderate spatial resolution and at an acceptable computational cost, provided that higher-order discretization is employed for the convective terms.

Discretization

Verification

Finite volume

Dispersion

Adsorption

Cyclic steady state

Författare

Adam Jareteg

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Dario Maggiolo

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Srdjan Sasic

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

Computers and Chemical Engineering

0098-1354 (ISSN)

Vol. 138 106852

Optimering och energieffektivisering av gasreningsprocesser för indirekt förgasning

Energimyndigheten (41245-1), 2016-03-08 -- 2019-12-31.

Drivkrafter

Hållbar utveckling

Ämneskategorier (SSIF 2011)

Energiteknik

Kemiska processer

Kemiteknik

Strömningsmekanik och akustik

Styrkeområden

Energi

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.compchemeng.2020.106852

Mer information

Senast uppdaterat

2020-08-19