Induced L2-gain computation for rational LPV systems using Finsler's lemma and minimal generators
Artikel i vetenskaplig tidskrift, 2020

This paper proposes a novel method to compute an upper bound on the induced L2-
gain for a linear parameter varying (LPV) system with rational parameter dependence.
The proposed method relies on a standard dissipation inequality condition. The
storage function is a quadratic function of the state and a rational function of the
parameters. The specific parameter dependence is restricted to involve (fixed) rational
functions and an affine term with free decision variables. Finsler's lemma and affine
annihilators are used to formulate sufficient linear matrix inequality (LMI) conditions for
the dissipativity relation. The dimension and conservatism of the resulting LMI problem
are reduced by the joint application of minimal generators and maximal annihilators. An
LPV model of a pendulum-cart system is used to demonstrate the proposed method
and compare it to existing techniques in the literature.

Linear parameter varying systems

rational Lyapunov function

linear fractional transformation

Stability

induced L2 gain

Författare

Peter Polcz

Pázmány Péter Katolikus Egyetem

Tamas Peni

Magyar Tudomanyos Akademia

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik, Reglerteknik

Gabor Szederkenyi

Pázmány Péter Katolikus Egyetem

Magyar Tudomanyos Akademia

Systems and Control Letters

0167-6911 (ISSN)

Vol. 142 104738

Styrkeområden

Transport

Ämneskategorier

Beräkningsmatematik

Robotteknik och automation

Reglerteknik

DOI

10.1016/j.sysconle.2020.104738

Mer information

Senast uppdaterat

2020-08-19