Energy-efficient cooperative adaptive cruise control strategy using V2I
Paper i proceeding, 2019
In an increasingly connected world, this paper presents an advanced and cooperative semi-autonomous driving system which targets not only convenient and safe mobility, but also achieves noticeably enhanced energy efficiency. By utilizing V2V and V2I communication, a vehicle's energy consumption can be significantly reduced, while maintaining safety and driving comfort. A holistic control strategy is considered, which integrates features from earlier Cooperative Adaptive Cruise Control (CACC) and Traffic Light Assistant (TLA) research. This strategy incorporate s traffic light signal phase timing (SPAT), speed limits, road gradients and curves, surrounding traffic and detailed powertrain characteristics of the ego vehicle into a single Model Predictive Controller (MPC) formulation. The system's performance was evaluated using a realistic cosimulation toolchain and tested on a real conventional vehicle on a powertrain testbed with real V2I hardware. Results for a D-class diesel passenger car driven over an urban route, show energy savings up to 25%, with an unchanged journey time compared to a typical human driver. The approach is valid for both urban cities driving and highways, whilst being adaptable to commercial vehicles and other powertrains (hybrid, fully electric).