A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life
Reviewartikel, 2020

Welding is a joining process that is associated with heating cycles which leads to considerable change in local material microstructure and the formation of high welding Residual stresses (RS) in the welded joint. Residual stresses can have a detrimental effect on the fatigue strength of welded joints. In this paper, previously published data from measurements of residual stresses in various types of welded joints are compiled. In total, more than 100 test results are studied covering steels with yield strengths between 307 MPa and 1050 MPa in different welded details (butt joints, longitudinal and transverse attachments, cruciform joints, as well as K-joints) with varying thicknesses. The collected data is used to study the distribution of welding residual stresses (regardless of the welding parameters) at weld toe and through the thickness of the welded plate. Probabilistic analysis is then used to arrive at a model that represents the value and distribution of residual stresses in welded joints. This model is used to predict and explain the scatter in fatigue test data from recent fatigue testing of welded samples.


Probability density function

Compressive residual stresses

Residual stresses shapes

Tensile residual stresses


Asma Manai

Chalmers, Arkitektur och samhällsbyggnadsteknik, Konstruktionsteknik

Rüdiger Ulrich Franz von Bock und Polach

Technische Universität Hamburg-Harburg (TUHH)

Mohammad al-Emrani

Chalmers, Arkitektur och samhällsbyggnadsteknik, Konstruktionsteknik

Engineering Failure Analysis

1350-6307 (ISSN)

Vol. 118 104787

LifeExt - Livslängdsförlängning för befintliga stålbroar

VINNOVA (2017-02670), 2017-06-08 -- 2019-12-31.

Trafikverket (TRV 2018/27547), 2018-05-15 -- 2020-11-30.


Teknisk mekanik

Bearbetnings-, yt- och fogningsteknik

Annan materialteknik



Mer information

Senast uppdaterat