Runaway dynamics in the DT phase of ITER operations in the presence of massive material injection
Artikel i vetenskaplig tidskrift, 2020

A runaway avalanche can result in a conversion of the initial plasma current into a relativistic electron beam in high-current tokamak disruptions. We investigate the effect of massive material injection of deuterium-noble gas mixtures on the coupled dynamics of runaway generation, resistive diffusion of the electric field and temperature evolution during disruptions in the deuterium-tritium phase of ITER operations. We explore the dynamics over a wide range of injected concentrations and find substantial runaway currents, unless the current quench time is intolerably long. The reason is that the cooling associated with the injected material leads to high induced electric fields that, in combination with a significant recombination of hydrogen isotopes, leads to a large avalanche generation. Balancing Ohmic heating and radiation losses provides qualitative insights into the dynamics; however, an accurate modelling of the temperature evolution based on energy balance appears crucial for quantitative predictions.

runaway electrons

fusion plasma

Författare

Oskar Vallhagen

Chalmers, Fysik, Subatomär fysik och plasmafysik

Ola Embréus

Chalmers, Fysik, Subatomär fysik och plasmafysik

Istvan Pusztai

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Linnea Hesslow

Chalmers, Fysik, Subatomär fysik och plasmafysik

Tünde Fülöp

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Journal of Plasma Physics

0022-3778 (ISSN) 1469-7807 (eISSN)

Vol. 86 4 475860401

Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (EUROfusion)

Europeiska kommissionen (EU), 2014-01-01 -- 2019-01-01.

Skena och skina

Europeiska kommissionen (EU), 2015-10-01 -- 2020-09-30.

Skenande elektroner i fusionsplasmor

Vetenskapsrådet (VR), 2018-12-01 -- 2021-12-31.

Ämneskategorier

Annan fysik

Fusion, plasma och rymdfysik

Den kondenserade materiens fysik

DOI

10.1017/S0022377820000859

Mer information

Senast uppdaterat

2020-09-24