Data-driven machine criticality assessment – maintenance decision support for increased productivity
Artikel i vetenskaplig tidskrift, 2022
updated and focuses on individual machines. Therefore, this paper aims at the development and validation of a framework for a data-driven machine criticality assessment tool. The tool supports prioritization and planning of maintenance decisions with a clear goal of increasing productivity. Four empirical cases were studied by employing a multiple case study methodology. The framework provides guidelines for maintenance decision-making by combining the Manufacturing Execution System (MES) and Computerized Maintenance Management System (CMMS) data with a systems perspective. The results show that by employing data-driven decision support within the maintenance organization, it can truly enable modern digitalized production systems to achieve higher levels of productivity.
bottleneck
Productivity
maintenance prioritization
criticality assessment
data-driven decision-making
Författare
Maheshwaran Gopalakrishnan
Chalmers, Industri- och materialvetenskap, Produktionssystem
Mukund Subramaniyan
Chalmers, Industri- och materialvetenskap, Produktionssystem
Anders Skoogh
Chalmers, Industri- och materialvetenskap, Produktionssystem
Production Planning and Control
0953-7287 (ISSN) 1366-5871 (eISSN)
Vol. 33 1 1-19DAIMP - Dataanalys inom underhållsplanering
VINNOVA (2015-06887), 2016-03-01 -- 2019-02-28.
Ämneskategorier
Produktionsteknik, arbetsvetenskap och ergonomi
Transportteknik och logistik
Styrkeområden
Produktion
DOI
10.1080/09537287.2020.1817601