Complete transverse stress recovery model for linear shell elements in arbitrarily curved laminates
Artikel i vetenskaplig tidskrift, 2020

Out-of-plane failure is common in composite layered materials. Its detection in numerical simulations usually involves a high-level of spatial refinement which may lead to an excessive computational time for large struc-tures. This paper presents a formulation for the recovery of the transverse stresses in conventional linear shell elements based on First-Order Shear Deformation Theory. Starting from the equilibrium equations, the pro-posed formulation allows the calculations to be made for arbitrary curvatures including variable ones. Compared to the Extended-2D method, it has the advantage of including all the contributions from the force and moment derivatives making it reliable in complex load cases. Several examples with different laminates, curvatures and loads are presented. The numerical results confirm the potential of the proposed method to be used both as post-processing tool for conventional models and as an enrichment criterion for adaptive modelling.

Linear shell elements

Delamination

Equivalent single-layer (ESL)

Transverse stresses

Stress recovery

Författare

Pierre M. Daniel

Universitat de Girona

Btech Technical Center

Johannes Främby

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Martin Fagerström

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Pere Maimi

Universitat de Girona

Composite Structures

0263-8223 (ISSN)

Vol. 252 112675

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

Strömningsmekanik och akustik

DOI

10.1016/j.compstruct.2020.112675

Mer information

Senast uppdaterat

2023-03-14