Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace
Artikel i vetenskaplig tidskrift, 2020

Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.

Författare

Søren Brander

Köpenhamns universitet

Istvan Horvath

Chalmers, Biologi och bioteknik, Kemisk biologi

Johan Ipsen

Köpenhamns universitet

Ausra Peciulyte

Chalmers, Biologi och bioteknik, Industriell bioteknik

Lisbeth Olsson

Chalmers, Biologi och bioteknik, Industriell bioteknik

Cristina Hernández-Rollán

Danmarks Tekniske Universitet (DTU)

Morten H.H. Nørholm

Danmarks Tekniske Universitet (DTU)

Susanne Mossin

Danmarks Tekniske Universitet (DTU)

Leila Lo Leggio

Köpenhamns universitet

Corinna Probst

Duke University

Dennis J. Thiele

Duke University

Katja Salomon Johansen

Chalmers, Biologi och bioteknik, Industriell bioteknik

Köpenhamns universitet

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 10 1 16369

Ämneskategorier (SSIF 2011)

Biokemi och molekylärbiologi

Biofysik

Strukturbiologi

DOI

10.1038/s41598-020-73266-y

Mer information

Senast uppdaterat

2020-10-22