A finite element splitting method for a convection-diffusion problem
Artikel i vetenskaplig tidskrift, 2020

For a spatially periodic convection-diffusion problem, we analyze a time stepping method based on Lie splitting of a spatially semidiscrete finite element solution on time steps of length k, using the backward Euler method for the diffusion part and a stabilized explicit forward Euler approximation on m ≥ 1 intervals of length k/m for the convection part. This complements earlier work on time splitting of the problem in a finite difference context.

Backward Euler Method

Finite Elements

Lie Splitting

Convection-Diffusion Problem

Lumped Mass Method

Time Stepping

Författare

Vidar Thomee

Chalmers, Matematiska vetenskaper

Computational Methods in Applied Mathematics

1609-4840 (ISSN) 1609-9389 (eISSN)

Vol. 20 4 717-725

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1515/cmam-2020-0128

Mer information

Senast uppdaterat

2020-11-10