A First-Order Explicit-Implicit Splitting Method for a Convection-Diffusion Problem
Artikel i vetenskaplig tidskrift, 2020

We analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on m >= 1 intervals of length k/m for the convection part. With h the mesh width in space, this results in an error bound of the form C(0)h(2) + C(m)k for appropriately smooth solutions, where C-m <= C' + C-''/m. This work complements the earlier study [V. Thomee and A. S. Vasudeva Murthy, An explicit- implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 (2019), no. 2, 283-293] based on the second-order Strang splitting.

Convection-Diffusion Problem

Lie Splitting

Time Stepping Method

Backward Euler Method

Författare

Amiya K. Pani

Indian Institute of Technology, Bombay

Vidar Thomee

Göteborgs universitet

Chalmers, Matematiska vetenskaper

A. S. Vasudeva Murthy

TIFR Ctr Applicable Math

Computational Methods in Applied Mathematics

1609-4840 (ISSN) 1609-9389 (eISSN)

Vol. 20 4 769-782

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1515/cmam-2020-0009

Mer information

Senast uppdaterat

2020-11-30