Robust Spin Interconnect with Isotropic Spin Dynamics in Chemical Vapor Deposited Graphene Layers and Boundaries
Artikel i vetenskaplig tidskrift, 2020

The utilization of large-area graphene grown by chemical vapor deposition (CVD) is crucial for the development of scalable spin interconnects in all-spin-based memory and logic circuits. However, the fundamental influence of the presence of multilayer graphene patches and their boundaries on spin dynamics has not been addressed yet, which is necessary for basic understanding and application of robust spin interconnects. Here, we report universal spin transport and dynamic properties in specially devised single layer, bilayer, and trilayer graphene channels and their layer boundaries and folds that are usually present in CVD graphene samples. We observe uniform spin lifetime with isotropic spin relaxation for spins with different orientations in graphene layers and their boundaries at room temperature. In all of the inhomogeneous graphene channels, the spin lifetime anisotropy ratios for spins polarized out-of-plane and in-plane are measured to be close to unity. Our analysis shows the importance of both Elliott-Yafet and D'yakonov-Perel' mechanisms with an increasing role of the latter mechanism in multilayer channels. These results of universal and isotropic spin transport on large-area inhomogeneous CVD graphene with multilayer patches and their boundaries and folds at room temperature prove its outstanding spin interconnect functionality, which is beneficial for the development of scalable spintronic circuits.

multilayer

spin transport

spin lifetime anisotropy

spin precession

graphene

Författare

Dmitrii Khokhriakov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Bogdan Karpiak

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Anamul Md Hoque

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Bing Zhao

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Subir Parui

KU Leuven

Saroj Prasad Dash

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 14 11 15864-15873

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU), 2020-04-01 -- 2023-03-31.

Spin kommunikation i Dirac Material heterostrukturer

Vetenskapsrådet (VR), 2017-01-01 -- 2020-12-31.

Ämneskategorier

Oorganisk kemi

Annan fysik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Materialvetenskap

DOI

10.1021/acsnano.0c07163

PubMed

33136363

Mer information

Senast uppdaterat

2021-01-05