Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
Artikel i vetenskaplig tidskrift, 2021

The molecular basis of how temperature affects cell metabolism has been a long-standing question in biology, where the main obstacles are the lack of high-quality data and methods to associate temperature effects on the function of individual proteins as well as to combine them at a systems level. Here we develop and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovers enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) is predicted to be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast strain, we obtain a thermotolerant strain that outgrows the wild type, demonstrating the critical role of sterol metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates modelling of complex biological systems in the absence of high-quality data and therefore shows promise for becoming a standard tool for genome scale modeling.

Författare

Gang Li

Chalmers, Biologi och bioteknik, Systembiologi

Yating Hu

Chalmers, Biologi och bioteknik, Systembiologi

Jan Zrimec

Chalmers, Biologi och bioteknik, Systembiologi

Hao Luo

Chalmers, Biologi och bioteknik, Systembiologi

Hao Wang

Chalmers, Biologi och bioteknik, Systembiologi

Wallenberg Lab.

Aleksej Zelezniak

Science for Life Laboratory (SciLifeLab)

Chalmers, Biologi och bioteknik, Systembiologi

Boyang Ji

Danmarks Tekniske Universitet (DTU)

Chalmers, Biologi och bioteknik, Systembiologi

Jens B Nielsen

Danmarks Tekniske Universitet (DTU)

BioInnovation Institute

Chalmers, Biologi och bioteknik, Systembiologi

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 12 1 190

Ämneskategorier

Farmaceutisk vetenskap

Bioinformatik (beräkningsbiologi)

Bioinformatik och systembiologi

DOI

10.1038/s41467-020-20338-2

PubMed

33420025

Relaterade dataset

Computed results for Bayesian genome scale modelling temperature effect on yeast metabolism [dataset]

DOI: 10.5281/zenodo.3686995

Mer information

Senast uppdaterat

2023-09-22