VISUALIZING THE RESULTS FROM UNSUPERVISED DEEP LEARNING FOR THE ANALYSIS OF POWER-QUALITY DATA
Artikel i vetenskaplig tidskrift, 2021

This paper presents a visualisation method, based on deep learning (DL), to assist power engineers in the analysis of large
amounts of power-quality data. The method assists in extracting and understanding daily, weekly and seasonal variations in
harmonic voltage. Measurements from 10 kV and 0.4 kV in a Swedish distribution network are applied to method to obtain
daily harmonic patterns and their distribution over the week and the year. The results are presented in graphs that allow the
interpretation of the results without having to understand the mathematical details of the method. The inferences given by the results demonstrate that the method can become a new tool that compresses PQ big data in a form that is easier to interpret. (for details, see the full paper (5 pages) in the conf. proceeding)

POWER-SYSTEM HARMONICS

POWER-QUALITY MONITORING

POWER-QUALITY

DEEP LEARNING

MACHINE LEARNING

Författare

Roger Alves De Oliveira

Luleå tekniska universitet

Chenjie Ge

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Irene Yu-Hua Gu

Chalmers, Elektroteknik

Math H. J. Bollen

Luleå tekniska universitet

IET Conference Proceedings

27324494 (eISSN)

Vol. 2021 6 653-657

Styrkeområden

Energi

Ämneskategorier

Elektroteknik och elektronik

Datavetenskap (datalogi)

DOI

10.1049/icp.2021.1771

Mer information

Senast uppdaterat

2024-04-19