Luminescence Quenching via Deep Defect States: A Recombination Pathway via Oxygen Vacancies in Ce-Doped YAG
Artikel i vetenskaplig tidskrift, 2021

Luminescence quenching via nonradiative recombination channels limits the efficiency of optical materials such as phosphors and scintillators and therefore has implications for conversion efficiency and device lifetimes. In materials such as Ce-doped yttrium aluminum garnet (YAG:Ce), quenching shows strong dependence on both temperature and activator concentration, limiting the fabrication of high-intensity white-light emitting diodes with high operating temperatures. Here, we reveal by means of first-principles calculations an efficient recombination mechanism in YAG:Ce that involves oxygen vacancies and gives rise to thermally activated concentration quenching. We demonstrate that the key requirements for this mechanism to be active are localized states with strong electron-phonon coupling. These conditions are commonly found for intrinsic defects such as anion vacancies in wide band gap materials. The present findings are therefore relevant to a broad class of optical materials and shine light on thermal quenching mechanisms in general.


Christopher Linderälv

Chalmers, Fysik, Kondenserad materie- och materialteori

Daniel Åberg

Lawrence Livermore National Laboratory

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Chemistry of Materials

0897-4756 (ISSN) 1520-5002 (eISSN)

Vol. 33 1 73-80

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Datorbaserad materialutveckling för transport egenskaper

Knut och Alice Wallenbergs Stiftelse, 2015-07-01 -- 2020-06-30.


Atom- och molekylfysik och optik

Den kondenserade materiens fysik



Mer information

Senast uppdaterat