Quasi-invariant Hermite Polynomials and Lassalle-Nekrasov Correspondence
Artikel i vetenskaplig tidskrift, 2021

Lassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero-Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasi-invariant extension. More specifically, we consider configurations A of real hyperplanes with multiplicities admitting the rational Baker-Akhiezer function and use this to introduce a new class of non-symmetric polynomials, which we call A-Hermite polynomials. These polynomials form a linear basis in the space of A-quasi-invariants, which is an eigenbasis for the corresponding generalised rational Calogero-Moser operator with harmonic term. In the case of the Coxeter configuration of type AN this leads to a quasi-invariant version of the Lassalle-Nekrasov correspondence and its higher order analogues.

Författare

Misha V. Feigin

Moscow State University

University of Glasgow

Martin Hallnäs

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Alexander P. Veselov

Russian Academy of Sciences

Moscow State University

Loughborough University

Communications in Mathematical Physics

0010-3616 (ISSN) 1432-0916 (eISSN)

Vol. 386 1 107-141

Kvasi-invarianter för ändliga Coxeter-grupper och integrabla system

Vetenskapsrådet (VR) (2018-04291), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s00220-021-04036-8

Mer information

Senast uppdaterat

2022-04-05