Performance of deep neural networks on low-power IoT devices
Paper i proceeding, 2021

Advances in deep learning have revolutionized machine learning by solving complex tasks such as image, speech, and text recognition. However, training and inference of deep neural networks are resource-intensive. Recently, researchers made efforts to bring inference to IoT edge and sensor devices which have become the prime data sources nowadays. However, running deep neural networks on low-power IoT devices is challenging due to their resource-constraints in memory, compute power, and energy. This paper presents a benchmark to grasp these trade-offs by evaluating three representative deep learning frameworks: uTensor, TF-Lite-Micro, and CMSIS-NN. Our benchmark reveals significant differences and trade-offs for each framework and its tool-chain: (1) We find that uTensor is the most straightforward framework to use, followed by TF-Micro, and then CMSIS-NN. (2) Our evaluation shows large differences in energy, RAM, and Flash footprints. For example, in terms of energy, CMSIS-NN is the most efficient, followed by TF-Micro and then uTensor, each with a significant gap.

Low-Power

IoT

Deep Neural Networks

Författare

Christos Profentzas

Chalmers, Data- och informationsteknik, Nätverk och system

Magnus Almgren

Chalmers, Data- och informationsteknik, Nätverk och system

Olaf Landsiedel

Christian-Albrechts-Universität zu Kiel

CPS-IoTBench 2021 - Proceedings of the 2021 Benchmarking Cyber-Physical Systems and Internet of Things


9781450384391 (ISBN)

CPS-IoTBench '21: Proceedings of the Workshop on Benchmarking Cyber-Physical Systems and Internet of Things
Nashville Tennessee, USA,

KIDSAM: Kunskap- och informationssdelning i digitala samverkansprojekt

VINNOVA (2018-03966), 2018-11-01 -- 2021-11-30.

RIOT: Ett resilient sakernas internet

Myndigheten för samhällsskydd och beredskap (MSB2018-12526), 2019-01-01 -- 2023-12-31.

AgreeOnIT: Lättvikts konsensus och distribuerat datakunskap i resursbegränsade sakernas Internet

Vetenskapsrådet (VR) (37200024), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Datorteknik

Datavetenskap (datalogi)

Datorsystem

Styrkeområden

Informations- och kommunikationsteknik

Drivkrafter

Hållbar utveckling

DOI

10.1145/3458473.3458823

Mer information

Senast uppdaterat

2023-04-21