Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing
Artikel i vetenskaplig tidskrift, 2021

Hydrogen (H2) sensors that can be produced en masse with cost-effective manufacturing tools are critical for enabling safety in the emerging hydrogen economy. The use of melt-processed nanocomposites in this context would allow the combination of the advantages of plasmonic hydrogen detection with polymer technology; an approach which is held back by the slow diffusion of H2 through the polymer matrix. Here, we show that the use of an amorphous fluorinated polymer, compounded with colloidal Pd nanoparticles prepared by highly scalable continuous flow synthesis, results in nanocomposites that display a high H2 diffusion coefficient in the order of 10-5 cm2 s-1. As a result, plasmonic optical hydrogen detection with melt-pressed fluorinated polymer nanocomposites is no longer limited by the diffusion of the H2 analyte to the Pd nanoparticle transducer elements, despite a thickness of up to 100 μm, thereby enabling response times as short as 2.5 s at 100 mbar (10 vol. %) H2. Evidently, plasmonic sensors with a fast response time can be fabricated with thick, melt-processed nanocomposites, which paves the way for a new generation of robust H2 sensors.

melt-processed nanocomposite

palladium nanoparticle

plasmonic sensing

fluorinated polymer

hydrogen permeability and diffusion

Författare

Ida Östergren

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Amir Masoud Pourrahimi

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Iwan Darmadi

Chalmers, Fysik, Kemisk fysik

Robson Rosa Da Silva

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Alicja Stolas

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Sarah Lerch

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Barbara Berke

Chalmers, Fysik, Materialfysik

Manuel Guizar-Sicairos

Paul Scherrer Institut

Marianne Liebi

Chalmers, Fysik, Materialfysik

Giacomo Foli

Consiglo Nazionale Delle Richerche

Vincenzo Palermo

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Consiglo Nazionale Delle Richerche

Matteo Minelli

Universita di Bologna

Kasper Moth-Poulsen

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Christian Müller

Chalmers, Kemi och kemiteknik, Tillämpad kemi

ACS Applied Materials & Interfaces

1944-8244 (ISSN) 1944-8252 (eISSN)

Vol. 13 18 21724-21732

Wallenberg Academy Fellow 2016

Knut och Alice Wallenbergs Stiftelse (KAW2016.0210), 2017-07-01 -- 2022-06-30.

Ämneskategorier

Polymerkemi

Analytisk kemi

Annan kemiteknik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1021/acsami.1c01968

PubMed

33909392

Mer information

Senast uppdaterat

2023-04-11