Time-Resolved and Label-Free Evanescent Light-Scattering Microscopy for Mass Quantification of Protein Binding to Single Lipid Vesicles
Artikel i vetenskaplig tidskrift, 2021

In-depth understanding of the intricate interactions between biomolecules and nanoparticles is hampered by a lack of analytical methods providing quantitative information about binding kinetics. Herein, we demonstrate how label-free evanescent light-scattering microscopy can be used to temporally resolve specific protein binding to individual surface-bound (∼100 nm) lipid vesicles. A theoretical model is proposed that translates protein-induced changes in light-scattering intensity into bound mass. Since the analysis is centered on individual lipid vesicles, the signal from nonspecific protein binding to the surrounding surface is completely avoided, offering a key advantage over conventional surface-based techniques. Further, by averaging the intensities from less than 2000 lipid vesicles, the sensitivity is shown to increase by orders of magnitude. Taken together, these features provide a new avenue in studies of protein-nanoparticle interaction, in general, and specifically in the context of nanoparticles in medical diagnostics and drug delivery.

surface plasmon resonance

surface-sensitive scattering microscopy

protein adsorption kinetics

single nanoparticle analytics

Författare

Mattias Sjöberg

Chalmers, Fysik, Nano- och biofysik

Mokhtar Mapar

Chalmers, Fysik, Nano- och biofysik

Antonius Armanious

Chalmers, Fysik, Nano- och biofysik

Vladimir Zhdanov

Russian Academy of Sciences

Chalmers, Fysik

Björn Agnarsson

Chalmers, Fysik, Nano- och biofysik

Fredrik Höök

Chalmers, Fysik, Nano- och biofysik

Nano Letters

1530-6984 (ISSN) 1530-6992 (eISSN)

Vol. 21 11 4622-4628

Tvådimensionell flödescytometry för analys av enskilda nanopartiklar

Vetenskapsrådet (VR) (2018-04900), 2018-12-01 -- 2021-12-31.

Ämneskategorier

Fysikalisk kemi

Biokemi och molekylärbiologi

Biofysik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1021/acs.nanolett.1c00644

PubMed

34003003

Mer information

Senast uppdaterat

2022-03-28