Optomechanical cooling with coherent and squeezed light: The thermodynamic cost of opening the heat valve
Artikel i vetenskaplig tidskrift, 2021

Ground-state cooling of mechanical motion by coupling to a driven optical cavity has been demonstrated in various optomechanical systems. In our paper, we provide a thermodynamic performance analysis of optomechanical sideband cooling in terms of a heat valve. As performance quantifiers, we examine not only the lowest reachable effective temperature (phonon number) but also the evacuated-heat flow as an equivalent to the cooling power of a standard refrigerator, as well as appropriate thermodynamic efficiencies, which all can be experimentally inferred from measurements of the cavity output light field. Importantly, in addition to the standard optomechanical setup fed by coherent light, we investigate two recent alternative setups for achieving ground-state cooling: replacing the coherent laser drive by squeezed light or using a cavity with a frequency-dependent (Fano) mirror. We study the dynamics of these setups within and beyond the weak-coupling limit and give concrete examples based on parameters of existing experimental systems. By applying our thermodynamic framework, we gain detailed insights into these three different optomechanical cooling setups, allowing a comprehensive understanding of the thermodynamic mechanisms at play.

Optomechanics

Quantum thermodynamics

Författare

Juliette Monsel

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Nastaran Dashti

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Sushanth Kini

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantteknologi

Jakob Eriksson

Göteborgs universitet

Student vid Chalmers

Henric Ernbrink

Student vid Chalmers

Ebba Olsson

Student vid Chalmers

Emelie Torneus

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantteknologi

Janine Splettstoesser

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Physical Review A

24699926 (ISSN) 24699934 (eISSN)

Vol. 103 6 063519

Värmeströmsfluktuationer och dens inverkan på lokala temperaturer och potentialer

Vetenskapsrådet (VR) (2018-05061), 2019-01-01 -- 2022-12-31.

Ickelinjär koppling mellan ljus och mekaniska vibrationer för experiment inom kvantoptik och kvantsensorer

Vetenskapsrådet (VR) (2019-04946), 2020-01-01 -- 2023-12-31.

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

DOI

10.1103/PhysRevA.103.063519

Mer information

Senast uppdaterat

2021-07-08