Modelling of runaway electron dynamics during argon-induced disruptions in ASDEX Upgrade and JET
Artikel i vetenskaplig tidskrift, 2021

Disruptions in tokamak plasmas may lead to the generation of runaway electrons that have the potential to damage plasma-facing components. Improved understanding of the runaway generation process requires interpretative modelling of experiments. In this work we simulate eight discharges in the ASDEX Upgrade and JET tokamaks, where argon gas was injected to trigger the disruption. We use a fluid modelling framework with the capability to model the generation of runaway electrons through the hot-tail, Dreicer and avalanche mechanisms, as well as runaway electron losses. Using experimentally based initial values of plasma current and electron temperature and density, we can reproduce the plasma current evolution using realistic assumptions about temperature evolution and assimilation of the injected argon in the plasma. The assumptions and results are similar for the modelled discharges in ASDEX Upgrade and JET. For the modelled discharges in ASDEX Upgrade, where the initial temperature was comparatively high, we had to assume that a large fraction of the hot-tail runaway electrons were lost in order to reproduce the measured current evolution.

fluid modelling

JET

ASDEX Upgrade

runaway electrons

tokamaks

Författare

Klara Insulander Björk

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Oskar Vallhagen

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Gergely Papp

Max-Planck-Gesellschaft

C Reux

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Ola Embréus

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Elisabeth Rachlew

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Tünde Fülöp

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Plasma Physics and Controlled Fusion

0741-3335 (ISSN) 1361-6587 (eISSN)

Vol. 63 8 085021

Ämneskategorier

Övrig annan teknik

Annan materialteknik

Fusion, plasma och rymdfysik

Styrkeområden

Materialvetenskap

DOI

10.1088/1361-6587/ac07b5

Mer information

Senast uppdaterat

2021-07-28