Aperiodic order and spherical diffraction, II: translation bounded measures on homogeneous spaces
Artikel i vetenskaplig tidskrift, 2021

We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and even translation bounded measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to the case of weighted model sets, in which we are able to derive more concrete formulas for the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the auto-correlation of a weighted model set in a Riemannian symmetric space can be identified with a (typically non-tempered) positive-definite distribution on R-n. This paves the way for a diffraction theory for such model sets, which will be discussed in the sequel to the present article.

Författare

Michael Björklund

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Tobias Hartnick

Karlsruher Institut für Technologie (KIT)

Felix Pogorzelski

Universität Leipzig

Mathematische Zeitschrift

0025-5874 (ISSN) 1432-8232 (eISSN)

Vol. In Press

Ämneskategorier

Geometri

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.1007/s00209-021-02817-4

Mer information

Senast uppdaterat

2021-08-16