V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework for Automotive Systems
Paper i proceeding, 2021
As it is problematic for a vehicle to reliably assess its own state when it is compromised, we investigate how vehicle trust can be used to identify compromised vehicles and how fleet-wide attacks can be detected at an early stage using cloud data. In our proposed V2C Anomaly Detection framework, peer vehicles assess each other based on their perceived behavior in traffic and V2X-enabled interactions, and upload these assessments to the cloud for analysis. This framework consists of four modules. For each module we define functional demands, interfaces and evaluate solutions proposed in literature allowing manufacturers and fleet owners to choose appropriate techniques. We detail attack scenarios where this type of framework is particularly useful in detecting and identifying potential attacks and failing software and hardware. Furthermore, we describe what basic vehicle data the cloud analysis can be based upon.
automotive
anomaly detection
cyber-physical systems
embedded systems
intrusion detection
security
resilience
Författare
Thomas Rosenstatter
Chalmers, Data- och informationsteknik, Nätverk och system
Tomas Olovsson
Nätverk och System
Magnus Almgren
Nätverk och System
ACM International Conference Proceeding Series
1-10 23
9781450390514 (ISBN)
Vienna, Austria,
Datasäkerhet för fordonssystem i en föränderlig miljö (CyReV fas 2)
VINNOVA (2019-03071), 2019-01-10 -- 2022-03-31.
Datasäkerhet för fordonssystem i en föränderlig miljö - fas 1 (CyReV)
VINNOVA (2018-05013), 2019-04-01 -- 2021-03-31.
Styrkeområden
Informations- och kommunikationsteknik
Transport
Ämneskategorier
Kommunikationssystem
Inbäddad systemteknik
Datorsystem
DOI
10.1145/3465481.3465750