Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy
Artikel i vetenskaplig tidskrift, 2022

High-order force constant expansions can provide accurate representations of the potential energy surface relevant to vibrational motion. They can be efficiently parametrized using quantum mechanical calculations and subsequently sampled at a fraction of the cost of the underlying reference calculations. Here, force constant expansions are combined via the hiphive package with GPU-accelerated molecular dynamics simulations via the GPUMD package to obtain an accurate, transferable, and efficient approach for sampling the dynamical properties of materials. The performance of this methodology is demonstrated by applying it both to materials with very low thermal conductivity (Ba8Ga16Ge30, SnSe) and a material with a relatively high lattice thermal conductivity (monolayer-MoS2). These cases cover both situations with weak (monolayer-MoS2, SnSe) and strong (Ba8Ga16Ge30) pho renormalization. The simulations also enable to access complementary information such as the spectral thermal conductivity, which allows to discriminate the contribution by different phonon modes while accounting for scattering to all orders. The software packages described here are made available to the scientific community as free and open-source software in order to encourage the more widespread use of these techniques as well as their evolution through continuous and collaborative development.

thermal conductivity

molecular dynamics

molybdenum disulfide

force constant potentials

clathrates

graphics processing unit acceleration

Författare

Joakim Brorsson

Teknisk ytkemi

A. Hashemi

Aalto-Yliopisto

Zheyong Fan

Bohai University

Aalto-Yliopisto

Erik Fransson

Chalmers, Fysik, Kondenserad materie- och materialteori

Fredrik Eriksson

Chalmers, Fysik, Kondenserad materie- och materialteori

Tapio Ala-Nissila

Aalto-Yliopisto

Loughborough University

A. V. Krasheninnikov

Helmholtz

Aalto-Yliopisto

H. P. Komsa

Oulun Yliopisto

Aalto-Yliopisto

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Advanced Theory and Simulations

25130390 (eISSN)

Vol. 5 2 2100217

Modelling Charge and Heat Transport in 2D-materials based Composites (MECHANIC)

Vetenskapsrådet (VR) (2017-06819), 2017-12-01 -- 2019-12-31.

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Datorbaserad materialutveckling för transportegenskaper

Knut och Alice Wallenbergs Stiftelse, 2015-07-01 -- 2020-06-30.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Teoretisk kemi

Den kondenserade materiens fysik

DOI

10.1002/adts.202100217

Relaterade dataset

Data and code for "Efficient calculation of the lattice thermal conductivity by atomistic simulations with ab-initio accuracy" [dataset]

DOI: 10.5281/zenodo.5034181

Mer information

Senast uppdaterat

2023-12-21