Computational model for low cycle fatigue analysis of lattice materials: Incorporating theory of critical distance with elastoplastic homogenization
Artikel i vetenskaplig tidskrift, 2022

A novel numerical framework for low cycle fatigue analysis of lattice materials is presented. The framework is based on computational elastoplastic homogenization equipped with the theory of critical distance to address the fatigue phenomenon. Explicit description of representative volume element and periodic boundary conditions are combined for computational efficiency and elimination of the boundary effects. The proposed method is generic and applicable to periodic micro-architectured materials. The method has been applied to 2-D auxetic and 3-D kelvin lattices. The classical Coffin-Manson and Morrow models are used to provide fatigue life predictions (strain-life curves). Predicted fatigue lives for the auxetic lattice are shown to provide good correspondence to experimentally found fatigue lives from the literature.

Theory of critical distance

Low cycle fatigue

Elastoplastic homogenization

Lattice materials

Författare

Danial Molavitabrizi

Uppsala universitet

Anders Ekberg

Chalmers, Mekanik och maritima vetenskaper, Dynamik

S. Mahmoud Mousavi

Uppsala universitet

European Journal of Mechanics, A/Solids

0997-7538 (ISSN)

Vol. 92 104480

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

Annan materialteknik

DOI

10.1016/j.euromechsol.2021.104480

Mer information

Senast uppdaterat

2021-12-10