Analytical results in transient brush tyre models: theory for large camber angles and classic solutions with limited friction
Artikel i vetenskaplig tidskrift, 2022

This paper establishes new analytical results in the mathematical theory of brush tyre models. In the first part, the exact problem which considers large camber angles is analysed from the perspective of linear dynamical systems. Under the assumption of vanishing sliding, the most salient properties of the model are discussed with some insights on concepts as existence and uniqueness of the solution. A comparison against the classic steady-state theory suggests that the latter represents a very good approximation even in case of large camber angles. Furthermore, in respect to the classic theory, the more general situation of limited friction is explored. It is demonstrated that, in transient conditions, exact sliding solutions can be determined for all the one-dimensional problems. For the case of pure lateral slip, the investigation is conducted under the assumption of a strictly concave pressure distribution in the rolling direction.

Tyre modelling

Transient tyre dynamics

Brush models

Transient rolling contact

Författare

Luigi Romano

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Francesco Timpone

Universita degli Studi di Napoli Federico II

Fredrik Bruzelius

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Statens Väg- och Transportforskningsinstitut (VTI)

Bengt J H Jacobson

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Meccanica

0025-6455 (ISSN) 1572-9648 (eISSN)

Vol. 57 1 165-191

COVER – Bedömning av CO2 och energieffektivitet hos fordon i verklig användning

Energimyndigheten (2017-007895), 2018-01-01 -- 2021-12-31.

VINNOVA (2017-007895), 2018-01-01 -- 2021-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

Annan matematik

Farkostteknik

Matematisk analys

DOI

10.1007/s11012-021-01422-3

Mer information

Senast uppdaterat

2024-02-02