Amendment to: populations in environments with a soft carrying capacity are eventually extinct
Artikel i vetenskaplig tidskrift, 2021

This sharpens the result in the paperJagers and Zuyev (J Math Biol 81:845-851, 2020): consider a population changing at discrete (but arbitrary and possibly random) time points, the conditional expected change, given the complete past population history being negative, whenever population size exceeds a carrying capacity. Further assume that there is an epsilon > 0 such that the conditional probability of a population decrease at the next step, given the past, always exceeds epsilon if the population is not extinct but smaller than the carrying capacity. Then the population must die out.

Stochastic stability

Population dynamics

Martingales

Extinction

Författare

Peter Jagers

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Sergey Zuev

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Journal of Mathematical Biology

0303-6812 (ISSN) 1432-1416 (eISSN)

Vol. 83 1 3

Ämneskategorier (SSIF 2011)

Evolutionsbiologi

Ekologi

Historia

DOI

10.1007/s00285-021-01624-z

PubMed

34155565

Mer information

Senast uppdaterat

2021-12-16