Peter Jagers
Peter Jagers har forskat om populationsdynamik, slumpmässiga punktsvärmar och statistisk slutledning. Tyngdpunkten ligger på populationsdynamik. F n forskar han om populationer där individerna tenderar att få många barn i små populationer, men få i stora, och om populationer där mutationer kan skapa mer livsdugliga och möjligen samexisterande arter. Ett annat tema är hur och när hotade bestånd kan dö ut.
Peter Jagers är ledamot av Kungliga Vetenskapsakademien, Kungliga Vetenskaps- och Vitterhetssamhället i Göteborg och en rad internationella sällskap. Han är hedersdoktor vid Bulgariska Vetenskapsakademien.
Visar 63 publikationer
Amendment to: populations in environments with a soft carrying capacity are eventually extinct
Limit theorems for multi-type general branching processes with population dependence
Convergence of the age structure of general schemes of population processes
Branching Processes: A Personal Historical Perspective.
On the establishment of a mutant
Populations in environments with a soft carrying capacity are eventually extinct
Slumpvariationer i det annars upprepbara
Applied probability as theoretical science: 50 years in the applied probability community
What can be observed in real time PCR and when does it show?
On the establishment, persistence, and inevitable extinction of populations
On the Complete Life Career of Populations in Environments with a Finite Carrying Capacity
Population Dynamics: Probabilistic Extinction, Stability, and Explosion Theorems.
Tillväxt eller utdöende - ett matematiskt mönster i biologi och samhälle
Dependence and interaction in branching processes
Evolutionary branching in a stochastic population model with discrete mutational steps
A Decomposable Branching Process in a Markovian Environment
Extinction, persistence, and evolution.
Extinction, Persistence, and Evolution
Population-size-dependent, age-structured branching processes linger around their carrying capacity
Stochasticity in the adaptive dynamics of evolution: the bare bones
Coalescent approximation for structured populations in a stationary random environment
A plea for stochastic population dynamics.
The mixing advantage is less than 2
Viability of small populations experiencing recurring catastrophes
General branching processes conditioned on extinction are still branching processes
European regulatory agencies should employ full time statisticians
General branching processes in discrete time as random trees.
The coalescent effective size of age-structured populations.
Branching processes : variation, growth, and extinction of populations
Branching Processes: Variation, Growth, and Extinction of Populations
Reversed Galton-Watson processes in the linear fractional case
Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process
Convergence to the coalescent in populations of substantially varying size
Om ekonomipriset till Kydland och Prescott
Branching processes in near-critical random encironments.
Convergence to the coalescent in populations of substantially varying size.
Stochastic fixed points for the maximum
The coalescent effective size of age-structured populations
Branching processes in near-critical random environments
Convergence to the coalescent in populations with stationary varying sizes
Random variation and concentration effects in PCR
Branching processes with deteriorating random environments
The age of a Galton-Watson population with geometric offspring distribution
The growth of general population-size-dependent branching processes year by year
Ladda ner publikationslistor
Du kan ladda ner denna lista till din dator.
Filtrera och ladda ner publikationslista
Som inloggad användare hittar du ytterligare funktioner i MyResearch.
Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:
Zotero Connector
Mendeley Web Importer
Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.
Visar 1 forskningsprojekt
Towards Sexual Reproduction in General Stochastic Population Models