Automotive UX design and data-driven development: Narrowing the gap to support practitioners
Artikel i vetenskaplig tidskrift, 2021

The development and evaluation of In-Vehicle Information Systems (IVISs) is strongly based on insights from qualitative studies conducted in artificial contexts (e.g., driving simulators or lab experiments). However, the growing complexity of the systems and the uncertainty about the context in which they are used, create a need to augment qualitative data with quantitative data, collected during real-world driving. In contrast to many digital companies that are already successfully using data-driven methods, Original Equipment Manufacturers (OEMs) are not yet succeeding in releasing the potentials such methods offer. We aim to understand what prevents automotive OEMs from applying data-driven methods, what needs practitioners formulate, and how collecting and analyzing usage data from vehicles can enhance UX activities. We adopted a Multiphase Mixed Methods approach comprising two interview studies with more than 15 UX practitioners and two action research studies conducted with two different OEMs. From the four studies, we synthesize the needs of UX designers, extract limitations within the domain that hinder the application of data-driven methods, elaborate on unleveraged potentials, and formulate recommendations to improve the usage of vehicle data. We conclude that, in addition to modernizing the legal, technical, and organizational infrastructure, UX and Data Science must be brought closer together by reducing silo mentality and increasing interdisciplinary collaboration. New tools and methods need to be developed and UX experts must be empowered to make data-based evidence an integral part of the UX design process.

Författare

Patrick Ebel

Universität zu Köln

Julia Orlovska

Chalmers, Industri- och materialvetenskap, Produktutveckling

Sebastian Hünemeyer

Karlsruher Institut für Technologie (KIT)

Casper Wickman

Chalmers, Industri- och materialvetenskap, Produktutveckling

Andreas Vogelsang

Universität zu Köln

Rikard Söderberg

Chalmers, Industri- och materialvetenskap

Transportation Research Interdisciplinary Perspectives

25901982 (eISSN)

Vol. 11 100455

Data Driven Användarupplevelse - DDUX

VINNOVA (2018-05017), 2019-02-01 -- 2021-12-31.

Datadriven UX

FFI - Fordonsstrategisk forskning och innovation (2018-05017), 2019-02-01 -- 2022-12-31.

Ämneskategorier

Annan data- och informationsvetenskap

Systemvetenskap

Människa-datorinteraktion (interaktionsdesign)

Farkostteknik

Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Styrkeområden

Informations- och kommunikationsteknik

DOI

10.1016/j.trip.2021.100455

Mer information

Senast uppdaterat

2022-02-03