A method for in-field railhead crack detection using digital image correlation
Artikel i vetenskaplig tidskrift, 2022

Railway infrastructure managers must decide when and how to maintain rails. However, they often have insufficient information about railhead cracks. Therefore, we propose a new method for rail crack detection using a train-mounted digital image correlation (DIC) camera system. The measurement train's weight cause rail bending, allowing the DIC to measure strain concentrations caused by surface-breaking cracks. In this study, we evaluate the method under laboratory conditions. The detected cracks correlate to the actual crack network in the analysed rail field sample. Furthermore, finite element simulations show the method's high sensitivity to crack depths. Existing methods, such as ultra-sonic and eddy-current, produce damage severity indications. The proposed method complements these techniques by providing a discrete description of the surface-breaking cracks and their depth. This information enables infrastructure managers to optimize rail maintenance. Additionally, such detailed measurements can be valuable for research in railhead damage evolution.

safety

crack detection

railway maintenance

Conditioning monitoring

digital image correlation

Författare

Knut Andreas Meyer

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Daniel Gren

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Johan Ahlström

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Anders Ekberg

Chalmers, Mekanik och maritima vetenskaper, Dynamik

International Journal of Rail Transportation

2324-8378 (ISSN) 2324-8386 (eISSN)

Vol. In Press

In2Track

Europeiska kommissionen (EU) (EC/H2020/730841), 2016-12-01 -- 2020-12-31.

Trafikverket (TRV2016/50535), 2016-09-01 -- 2019-06-30.

In2Track-2 (CHARMEC EU19)

Trafikverket, 2018-11-01 -- 2021-10-31.

Europeiska kommissionen (EU) (EC/H2020/826255), 2018-11-01 -- 2021-10-31.

Ämneskategorier

Medicinsk laboratorie- och mätteknik

Annan medicinteknik

Datorseende och robotik (autonoma system)

DOI

10.1080/23248378.2021.2021455

Mer information

Senast uppdaterat

2022-03-02