Central and convolution Herz-Schur multipliers
Artikel i vetenskaplig tidskrift, 2022

In this paper we obtain descriptions of central operator-valued Schur and Herz-Schur multipliers, akin to a classical characterisation due to Grothendieck, that reveals a close link between central (linear) multipliers and bilinear multipliers into the trace class. Restricting to dynamical systems where a locally compact group acts on itself by translation, we identify their convolution multipliers as the right completely bounded multipliers, in the sense of Junge-Neufang-Ruan, of a canonical quantum group associated with the underlying group. We provide characterisations of contractive idempotent operator-valued Schur and Herz-Schur multipliers. Exploiting the link between Herz-Schur multipliers and multipliers on transformation groupoids, we provide a combinatorial characterisation of groupoid multipliers that are contractive and idempotent.

central

Schur multiplier

convolution

idempotent

Herz-Schur multiplier

Författare

Andrew McKee

Uniwersytet w Białymstoku

Reyhaneh Pourshahami

Kharazmi University

Ivan G. Todorov

University of Delaware

Lyudmyla Turowska

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

New York Journal of Mathematics

1076-9803 (ISSN) 10769803 (eISSN)

Vol. 28 1-43

Ämneskategorier (SSIF 2011)

Algebra och logik

Geometri

Matematisk analys

Mer information

Senast uppdaterat

2022-07-02