A multiscale methodology for small-scale bubble dynamics in turbulence
Artikel i vetenskaplig tidskrift, 2022

We formulate in this paper a multiscale numerical framework that handles small-scale bubble dynamics in turbulence. Our framework involves bubbles with arbitrary density ratios with the carrier phase. We use a Moving Reference Frame method that follows a bubble to deal with a fast rising of bubbles present at high density ratios between the phases. We use a Proportional Integral Derivative controller to handle an additional acceleration term in the governing equations that stems from the change of a coordinate system from a fixed to a non-inertial one. Our framework accounts for the fact that the dynamics of bubbles are significantly influenced by the unsteadiness of the small-scale turbulent liquid fluctuations that modify the bubble shapes and alter their motion. In addition, we improve and speed up, with at least two orders of magnitude in computational time, the numerical framework recently proposed by Milan et al. (2020). The developed numerical framework can capture processes occurring at time scales even smaller than the Kolmogorov times. It can be applied to droplets, bubbles or particle systems in both laminar and turbulent flows, using any general DNS technique that handles two-phase flows.

Turbulence

Bubbles

Moving reference frame

Multiscale method

DNS

Författare

Niklas Hidman

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Srdjan Sasic

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Gaetano Sardina

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

International Journal of Multiphase Flow

0301-9322 (ISSN)

Vol. 150 103976

Förstå och modellera turbulens skapad av bubblor

Vetenskapsrådet (VR) (2017-05031), 2018-01-01 -- 2021-12-31.

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan fysik

Strömningsmekanik och akustik

DOI

10.1016/j.ijmultiphaseflow.2022.103976

Mer information

Senast uppdaterat

2022-03-02