Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion
Artikel i vetenskaplig tidskrift, 2022

Glucuronoyl esterases (GEs) are α/β serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization.


Zhiyou Zong

Köpenhamns universitet

Nankai University

Scott Mazurkewich

Chalmers, Biologi och bioteknik, Industriell bioteknik

Caroline Pereira

Universidade Estadual de Campinas

Haohao Fu

Nankai University

Wensheng Cai

Nankai University

Xueguang Shao

Nankai University

Munir Skaf

Universidade Estadual de Campinas

Johan Larsbrink

Chalmers, Biologi och bioteknik, Industriell bioteknik

Leila Lo Leggio

Köpenhamns universitet

Nature Communications

2041-1723 (ISSN)

Vol. 13 1 1449

Structure-based engineering of glucuronoyl esterases for separation of lignin and carbohydrates

Novo Nordisk Fonden (27698), 2018-01-01 -- 2020-12-31.


Biokemi och molekylärbiologi


Bioinformatik (beräkningsbiologi)




Livsvetenskaper och teknik (2010-2018)





Relaterade dataset

The glucuronoyl esterase OtCE15A R268A variant from Opitutus terrae in complex with, and covalently linked to, D-glucuronate [dataset]

DOI: 10.2210/pdb7b7h/pdb URI:

Mer information

Senast uppdaterat